If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-81x+162=0
a = 4; b = -81; c = +162;
Δ = b2-4ac
Δ = -812-4·4·162
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-81)-63}{2*4}=\frac{18}{8} =2+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-81)+63}{2*4}=\frac{144}{8} =18 $
| 3p/5p+1/5(40-p)=0 | | 2x-6=-40 | | 10n+0.3=0.1+0.3 | | 2k^2-32k=58 | | 12x(6)=2 | | -2x^2-48x+86=0 | | -2x-48x+86=0 | | x2-6=-13 | | 4p^2-16p-132=0 | | 3w^2+36w-3=0 | | 7+9x=-101 | | -100=7+9x | | x-7/7=3 | | d^2+2d-5=0 | | -22=k+(-33) | | x^2-26x-49=0 | | 16x2−81=0 | | 3g^2+48g+105=0 | | X^2-2=8+3x | | u^2-26u+10=0 | | (Y+1)=2(x-1) | | -2z^2+44z+42=0 | | S=3f-25 | | 200=0.50x-12x | | 3y+2y-y=0 | | 14z+4-12z=0 | | 2.3-y=2.301 | | –3+x=11 | | 21,060,000,000=1.4x+5.2 | | 0=(x^2-6x)-50(x^2-6x)-275 | | -4/5d=2/9 | | 8-6x-6x+9x+27=11 |